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ABSTRACT

African swine fever virus is a complex DNA virus
that infects swine and is spread by ticks. Mortality
rates in domestic pigs are very high and the virus is
a significant threat to pork farming. The genomes of
16 viruses have been sequenced completely, but these
represent only a few of the 23 genotypes. The viral
genome is unusual in that it contains 5 multigene

CORRESPONDING

families, each of which contain 3-19 duplicated copies

AUTHOR (paralogs). There is significant sequence divergence
‘ . : between the paralogs in a single virus and between the
Chris Upton . orthologs in the different viral genomes. This, together

with the fact that in most of the multigene families
there are numerous gene indels that create truncations
and fusions, makes annotation of these regions very
difficult; it has led to inconsistent annotation of the 16
viral genomes. In this project, we have created multiple

sequence alignments for each of the multigene families

and have produced gene maps to help researchers more
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African Swine Fever Virus (ASFV) is a
large dsDNA virus in the family Asfarviridae;
25 genotypes have been characterized by
sequencing of the pf2 gene (1, 12, 13). The
virus is endemic in many regions of Africa
where it infects primarily warthogs and is
spread via the bites of soft ticks (9). Although
ASFV causes mild symptoms in warthogs and
produces no symptoms while replicating in
the ticks, it causes very serious haemorrhagic

will help researchers ascertain which members of the
multigene families are present in each of the viruses.
This is critical because some of the multigene families
are known to be associated with virus virulence.

disease in domestic pigs and wild boar. In these
animals, the mortality rate approaches 100%

for some ASFV strains (18). The relatively
recent (2014) but extensive spread of ASFV
through Affica to parts of Central Europe takes
a significant toll on both small and large-scale
pig farming operations in these regions, putting
a large strain on the global pig trade (5).

To date, most successful viral prevention
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methods rely on routine degenerate PCR
screening of wild pig and tick populations
together with a rapid and competent diagnosis
program when an outbreak is suspected. In
addition, strict sanitary control procedures
must be implemented to reduce the possibility
of infected wild hosts interacting with
domestic pigs (f). When outbreaks occur,
currently, the only effective response is culling
of an infected herd and the imposition of a ban
on the movement of adjacent herds (2). This
produces serious economic problems for the
farmers and may incentivize noncompliance.
Clearly, an unhindered pork trade would be
very beneficial and benefit a large proportion
of the population. Between 2014 and 2015,
close to S55 million was spent on ASFV
prevention in the Baltic States alone, which
was considered to have prevented USS4.5
billion in potential losses (7).

Sixteen full ASFV genomes have been
sequenced to date, and more than 100 will
be sequenced in the next 2-3 years (E. Okoth,
personal communication). The availability of
these genome sequences is important because
comparative genomics analyses will allow
researchers to better correlate gene content and

amino acid sequence variation with virulence
and antigenic variation. However, all ASFV
isolates have at least 5 multigene families
(MGF) that are made up of sets of paralogs,
which are frequently but not always arranged
in tandem. Not only do the different viruses
have different numbers of these paralogs,

but they frequently have indels that remove
multiple genes and partial genes resulting in
some gene fusions (4,6,14). Consequently, when
these viral genomes are aligned by software
tools these regions are not aligned correctly.
The problem is made more complicated by the
fact that the individual MGFs have sometimes
been mis-annotated due to failure to identify
the correct ortholog groups within the sets of
paralogs. Correct identification of the members
of these MGFs is especially important because
these genes have been linked with virus
virulence (6).

The challenge of developing an effective
vaccine stems, in part, from the high antigenic
diversity distributed among the different
strains of ASFV and therefore from the
genomic variation. Although it is possible to
induce immunity in pigs that protects from
challenge with a homologous genotype, the
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MGF Paralogs Size (bp)
MGF 100 3 375-440
MGF 110 13 315-875
MGF 300 3 315-800
MGF 360 19 960-1100
MGF 505 10 1500-1630

Conservation Mis-annotations
High 1
Low 27
High 5
Moderate 17
Moderate 12

generation of protection against a heterologous
genotype has proved unreliable (15). In fact,
vaccination does not always adequately protect
against viruses of the same genotype (19).

Here we describe the reannotation of the
ASFV MGFs using a common nomenclature
that will facilitate future ASFV genome
comparisons and provide clarity for the
discussion of the differences between viral
gene sets.

METHODS

DATA SET

Genomes of the following ASFV isolates
were used, GenBank accession numbers are
given in parentheses: ASFV-Benin_97_1
(AM#2939); ASFV-L60 (KM262844);
ASFV-E75 (FN557520); ASFV-OURT _88_3
(AM#A2240); ASFV-NHV (KM262845);
ASFV-Mkuzi_1979 (AY261362); ASFV-BAFIV
(U18466); ASFV-Georgia_2007/1 (FR682468);
ASFV-Pretorisuskop_96_4 (AY261363); ASFV-
Warmbaths (AY261365); ASFV-Warthog
(AY261366); ASFV-Tengani62 (AY261364);
ASFV-MWI_Lil_20_1_1983 (AY261361);
ASFV-Ken05_Tk1 (KM111294); ASFV-Ken06
(KM111295); ASFV-KEN_1950 (AY261360).

PHYLOGENETIC TREE AND
DOTPLOT CONSTRUCTION

A multiple sequence alignment (MSA)
of the 16 complete ASFV genomes was
generated using MAFFT (10). Base-By-Base
(BBB; (8)) was used to visualize the MSA and
highlight the differences between the genomes.
Maximum-likelihood phylogenetic trees were
constructed using RAxML (16) under the
GTRGAMMA base substitution model using
1000 bootstrap replicates. MEGA7 (1) was used
to visualize and manipulate the phylogenetic
tree output.

Since alignment tools such as MAFFT treat
genomes as linear syntenic sequences, they
are unable to accurately display any sequence
transpositions. Similarly, it can be difficult to
assess small differences in the quality of the
various possible alignments for the ASFV
MGFs from a MSA. Therefore dotplots, which
provide a 2-dimensional visualization of all
nucleotides-against-all nucleotides were used
to supplement genome alignments (JDotter;
(3)). A dotplot was created for each individual
MGF gene compared against a full length
ASFV reference genome. The series of matrix
alignments across the dotplots created a unique
“barcode” describing the relationship of the
gene to all the paralogs in the MGFs. The
dotplots were especially useful for determining
the breakpoints between fused paralogs.
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CONSTRUCTION OF MGF
MAPS

The MGF maps were created as vector
graphics with Omnigraffle (Omni Group,
Seattle) on iMac computers. These diagrams
can be fully edited to incorporate new
genomes and new MGF orthologs as they are
discovered.

RESULTS

The goal of this analysis was to create an
accurate reference map of the distribution of
MGF members throughout the 16 sequenced
ASFV genomes. Since the MGF members are
not simply present or absent, an annotation
scheme was also required to describe the
various gene fragmentation/truncation/
fusion patterns that exist in the different

virus strains. Since we do not yet know the
functional consequences of these multiple
rearrangements on the biology of the viruses,
the purpose of the map is primarily to flag
the various differences that exist between

the ASFV MGFs. In addition, due to the
extremely complex nature of the indels in
the MGF regions, which compound when
MSAs are generated, we opted to illustrate
general variations in the open reading frame
(ORF) patterns rather than try to capture every
single difference. Our results are sufficient to
flag differences between the paralogs so that
a detailed DNA sequence alignment of the
region can be performed if more information
is required for a particular study.

There are currently 5 known MGF series
observed in ASFV. Paralogs within an MGF
series are numbered chronologically as they
appear in the ASFV genome and are classified

Strain _ MGF 505-2R MGF 505-3R MGF 505-4R MGF 505-5R MGF 505-6R MGF 505-7R MGF 505-9R MGF 505-10R MGF 505-11L
1581 bp. 843 bp 1518 bp 1497 bp 1578 bp 1587 bp 1521 bp 1629 bp 1629 bp

as “R” or “L” indicating that this gene is either
transcribed on the forward or reverse strand
respectively.

Our first step in reviewing the relationships
between the paralogs/orthologs of each MGF
was to create a phylogenetic tree. The MSA
was generated using MAFFT with the DNA
sequences and the phylogenetic trees were
constructed with RAxML. Figure 1 illustrates
the value of the trees by showing a visual
representation of the relationship between
the paralogs of the MGF-503 series (MGF
average size 505 amino acids). For example,
the tree shows that paralogs MGF-505-6R and
MGF-505-7R result from a relatively recent
duplication. However, it must be appreciated
that phylogenetic trees also hide the raw data,
which may have valuable information about
the sequences. For example, recombination
events and deletions that fuse two paralogs
are likely to be lost if only the tree is viewed.
Therefore, to ensure that the tree generation
step was not flawed by faulty input data,

9R - 033

10R - 037

10R - 028

10R - 032

10R - 042

10R - 045

10R - 041

10R - 045

we checked the MSAs with BBB, a MSA
editor that also provides highlighting of the
differences between pairs of sequences in the
MSAs. This helps the researcher recognize
MSA regions that have inconsistent similarity
levels and may be the result of gene fusion
events.

In addition to displaying sequence
alignments, BBB is capable of generating a
“summary view” of sequence alignments,
that captures the positions of SNPs and indel
information to allow large MSAs to be shown
on a single page. Figures 2 and 3 illustrate
the use of BBB to view parts of MGF-110.

A truncation of ASFV-Geo MGF-110-1L

is shown together with previous alternate
naming of ASFV MGF-110-3L orthologs
(Figure 2). In MGF-110, we propose 13 paralogs
whereas 14 had been previously annotated
among the 16 genomes because fragments of

a single gene had been annotated separately.
Figure 3 shows several of the difficulties faced
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in trying to annotate the MGFs consistently: 1)
MGF-110-11L is fragmented in several viruses,
9) A large deletion in ASFV-MWI creates a

fusion of MGF-110-9L/11L, and 3) Large indels

(red and green blocks, which illustrate insertion

or deletion with respect to the reference) create
orthologs of significantly different sizes (MGF-
110-12L). Since the ORFs are displayed by BBB
across gapped alignments, they are not accurate
representations of their true size.

Although MSAs do show raw data (the
actual aligned DNA sequences), because they
display a one-dimensional representation
of the alignment they are of less use when
regions of sequences may have been
rearranged. In such situations, the two-
dimensional presentation of global sequence
comparisons from a dotplot can better show

rearrangements. For example, Figure 4 shows
the comparison of the ASFV-E75 MGF-360-

1L/9L fusion with the 9 parental orthologs. It
also shows the results of paralog comparison
(IL and 2L for ASFV Mkuzi) and ortholog
comparison (IL for ASFV-E75 and ASFV-
Mkuzi).

After reviewing data from phylogenetic
trees, MSAs and dotplots, we constructed
a summary diagram for each MGF. These
are presented as Supplementary Figures 1-6,
which are provided at a large scale to present
much greater detail . For each summary
diagram, there is also an “information sheet”
that explains the representations of the MGFs
(Supplementary Figures 7-12). These figures
are also available from the Viral Bioinformatics
Resource Center, in the ASFV section (https://
virology.uvic.ca/organisms/dsdna-viruses/
asfarviridae/). Figure 5 is an example of one of
the summary diagrams and Table 1 shows the
varying complexity of the individual MGFs.
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Although many of the MGFs are similar
among the different ASFV strains, there
are some differences that are specific to
particular clades of the ASFVs. Examples
of these are shown in Figure 6 with a full
genome phylogenetic tree provided in Figure
7. From these figures, it is clear that the
MGFs are relatively fluid, with differences
appearing even between ASFV-Ef5 and
—L60, which are very similar. However,
some of this variation is expected given the
overall variation between the ASFV strains.
Interestingly, although these viruses are all
denoted as ASFV strains, there is significant
divergence between them. A comparison of
the ASFV B602L, p32, pS4, and pf2 genes (as
concatenated amino acid sequences) of the 16
ASFVs revealed that there are several viruses
that have diverged to be 94 - 95 % identical
(aa). In contrast, we found that poxviruses,

which belong to a different family of large
DNA viruses, that are classified as separate
species within the Capripox or Orthopox
genera may be 97 - 99 % identitical (aa) in
pairwise alignments. Thus, ASFVs that are
currently classified as different genotypes
within a single species may well be classified
into different species if taxonomic standards
that are used with poxviruses were applied to

ASFV.

DISCUSSION

The genomic regions that encode the 5
MGFs of ASFV presented here are highly
variable and are hotspots for indels making
both sequence alignment and accurate
annotation difficult. This has resulted in
inconsistent annotation among the 16 ASFV
genomes for the identification of paralogs and
especially the naming of gene fusions. Since
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a large number of ASFV genomes will be
sequenced in the near future, we decided that
standardizing the annotation and presentation
of the ASFV MGFs would greatly simplify
genome annotation in the future. With a
better reference system for the ASFV MGFs
available, we envision a 3-part process in

the annotation process for ASFV genomes
sequenced in the future. First, there would be
a basic sequence similarity search with a set
of 10 conserved genes to identify the most
similar reference genome to be used with

the Genome Annotation Transfer Utility tool
(GATU; (17)). Second, a dotplot would be used
to confirm co-linearity between the proposed
reference genome and the newly sequenced
target genome. Third, GATU would be used
to transfer as many annotations as possible (>
95 %) from the reference genome to the target,
with the use of a full genome alignment of
the reference and target in BBB to confirm the
positions and numbering of the members of
the MGFs. As the number of sequenced and
annotated genomes increases, fewer differences
will be found between the new target
genomes and their references. Thus, GATU
will become more efficient and less annotator
intervention will be required to annotate those
few ORFs that GATU leaves unfinished.

In conclusion, we believe that our
figures are an intuitive visualization of the
arrangement of genes within the MGFs,
especially when there is a need to compare
the MGFs of different viruses. It is envisioned
that the maps of the ASFV MGFs will be
living documents, updated, by a volunteer
curator from the research community, with
any new paralogs that may be discovered in
newly sequenced genomes. This is likely to
be required since genomes have yet to be
sequenced from a large proportion of the
ASFV genotypes and the MGFs are the most
variable parts of the genomes. To this end,
the diagrams can be easily updated when

new MGF paralogs are discovered by the
addition of new columns. Although new
ASFV genomes can be added to the diagrams
by simply copying the most similar existing
row and editing the sizes of the gene boxes
and labels, as the number of genomes grows,
space could be saved by showing a single

representative if multiple viruses have identical
MGFs.

These MGF maps will speed up the
annotation process and simplify the
comparison of new ASFV genomes. With
more accurate genome alignments, researchers
will also be better able to correlate genomic
features with virulence levels of the various
ASFV isolates.
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b en gones malkare e ominas runcatio of s g, Supp. Figure 9. Information sheet describing MGF 300.

Gene labels:

The annotation of each gene is in two parts: the currently assigned orsholag
group followed by the corresponding gene number of the connected strain.

If the orgholag group is incorrectly annotated, it is labelled in red.

Supp. Figure 7. Information sheet describing MGF 100.
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MGF 360 Figure Legend MGF 360 Figure Legend

MGF 360-3L
-
| genes with this oxshalag.
Ortholog columns and gene size:

eferencelength sated: Vo
" eiie Oriental

fMeF 110-141 MGF 100 has "R

Famne

osthalags that are transcribed on the forward strand (5>
) and "L* osthalogathat are transcribed on the reverse strand (3 € 5. R" gene
o

missing in
these

MGF 360 Figure Legend

Grey boxes
deler

5 Inframe,
ton

Special note Gene Features:

fragmentation of an assbalag nto two smaller ORFs.

Reference length of this
ostholog.

conmucnd enomes
[izee 1095 0m
Genes: Stze:less than
heading indicate 1095 b,
MGF 110-141 Amino terminus
in strains BA71V and NHY, but present in 75 and Miuzi 1979 o termi runcaton
ize: Less than 1095 b Sizes less than 1164 e e
e MWLLLZ0 1 1983 B baand smaller than “fusion” genes.
[Ained oot T above gene o
oo cilen ‘runcation truncation
cone auaonts 11 Relative gene size and truncations:
fragments

0 other genes of the same ortholog

Gene labels:

MGF 360 Figure Legend MGF 360 Figure Legend

;

1]

90 4 g0k

MGF 360-1.5L:
MGF 360-17R Missing: ‘The MGF 360-1.5L osshalag i present due to alarge insertion present only in
MGF strains Ken03_Tk1 and KEN_1950 that aligns between the 1L and 2L arsbologs,
partof the MGF the

K
=

MGF 360-18R Missing:
The MGF

represented in the diagram.

MGF 360-20R Missing:
‘The MGF 360-20R asthalag s annotated in only E75 and BA71V strains

only genes amnoutea
ol = Wi MG 360.71
assignments to be a new osthalog,

MGF 360-7L Missing:

L, and 6L
1950,
KEN_ \d 6L ozzhalogs, This is
thalag as 5L, 6L or 7L.
h L

andtwo.
adopted in this diagram.

MGF 360 Figure Legend

Cross-Diagram Fusions:
110-7L/MGF 360-6L

11071 360-6L. The
e

[

T
the two MGF oszhologs,

'MGF 360-5L > MGF 360-6L:
dash

non-MGF. 110-9L and 11L
MGF 360-6L character and only a short region aligned to the mid MGF 110-9L/11L
360-61 The,

terminus AL asshal

GEO_2007|1 MGF 360-19R:
“The GEO_2007|1 strain has an ORF that aligns with the 19 oxshalags but
was not annotated.

Supp. Figure 10. Information sheet describing MGF 360.

MGF 505 Figure Legend MGF 505 Figure Legend

[GF 505 arholog group

MGF 505-2R
Approsmate szs o 1581 bp
[genes with this osshalog.
Ortholog columns and gene size:
reference lengthstated. Gene Orientati

MGF 300 st are transeribed on the forward strand (5' >

0 has "R ortbologs th
3)and“L” oxholog that ar transcribed on the reverse strand (3 € 51, R” gene
st

MGF 505-2R
1581 bp.

MGF 505 Figure Legend

MGF 505 Fusion:

Frerrey|

fragments.

MGF 505-8R Missing:
MGF 505-8R is only annotated in L60, OURT_68_3, and NHV. There is high
orthologs

‘truncation

Relative gene size and truncations:

o other genes of the same ortholog

leagth genes indicates an amino terminus truncaton ofthis

Gene labels:

MGF 505-6R and 7R

BR group. I MGF MGE
Ducto only

ossholog in this diagram.

MGF Compilation Figure Legend

MGF ortholog group

Ortholog columns and gene size

reference length stated.

MGF Compilation Figure Legend

MGF 11041

presentin
Miauzi_1979
strain

MGF 110-4L

missing in

Genes:

Pretorisuskop_96_4, Warrhaths, and Wartho, but present in Mkuzi_1979 and
GEO_2007[1.

Gene Orientation:

(5'> ¥) and "L” cizbologs that are transcribed on the reverse strand (3' €
o

[Size: ~1095 b,

Q| e

Bize: less than 1095 ba,
butlarger than above

Amino terminus
truncation

Relative gene size and truncations:

Gene labels:

his MGF 110-11L oxsbalog
s splitinto two smaller
ORFs due to frame shift

Special Note Gene Features:

e 11L Fendof
the ORF for L60-011 in different reading frames.

C
fragmentation of an aribolog nto two smallr OREs.
L

Grey box: In-frame deletion

« d t0 the aligned

he
genomes.

Curgterminus separated by deleton (grey box) MGF 110-130/14L Overtap

ee
o other genes o the same ortholog.
A5/

A3

MGF Compilation Figure Legend

and are represented by black gene boxes. The size and alignment of the black gene
boxes to a given grtholog group is representative of how much of the grthalog is
fused and which region.

The fused grtholeg groups are labelled along the deletion box connecting the
fragments.

The absence of a deletion box in a gene fusion indicates that the deletion that
connects the two ORFs is only a few base pairs that would be too small to resolve on
this diagram.

MGF Fusion:

“fusion” genes

Supp. Figure 11. Information sheet describing MGF 505.

Supp. Figure 192. Information sheet describing MGF compilation.
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