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ABSTRACT
When we mathematically model natural phenomena, there 
is an assumption concerning how the mathematics relates to 
the actual phenomenon in question. This assumption is that 
mathematics represents the world by “mapping on” to it. I argue 
that this assumption of mapping, or correspondence between 
mathematics and natural phenomena, breaks down when 
we ignore the fine grain of our physical concepts. I show that 
this is a source of trouble for the mapping account of applied 
mathematics, using the case of Prandtl’s Boundary Layer solution 
to the Navier-Stokes equations.
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I. CONSIDERATIONS OF THE INTERFACE 
BETWEEN MATHEMATICS AND THE SCIENCES

It is widely accepted that mathematics is of great use to science. 
Mathematics seems to give our laws of nature more detail and enhance 
our ability to make predictions. We see this when scientists try to 
predict natural phenomena—from the equations of celestial mechanics 
they develop to precisely calculate the motions of the planets, to the 
current complex system of equations they use to describe the global 
climate system. What is curious about this is why mathematics is 
so useful in the natural sciences. This sentiment is encapsulated in 
Eugene P. Wigner’s landmark paper, “The Unreasonable Effectiveness 
of Mathematics in the Natural Sciences,” in which Wigner wonders 
at the mysterious ways that mathematics provides laws of nature with 
their precision and predictive utility.1 How exactly mathematics 
provides this is unclear, especially given its abstract nature—as opposed 
to the decidedly non-abstract subject matter of the natural sciences. As 
Bertrand Russell stated, “It must have required many ages to discover 
that a brace of pheasants and a couple of days are both instances of 
the number two.”2 The question is how an abstract concept such 
as “one”—which seems to lack the character of concrete “physical 
world” concepts such as “rock”—could possibly aid us in obtaining 
knowledge about the physical world.

One of the main approaches to explaining how mathematics 
can aid in representing the physical world is commonly known as 
the “mapping account.” In short, the mapping account asserts that 
the structure generated by a mathematical representation is in some 
specific sense—usually defined in terms of the mathematical notions 
of isomorphism and homomorphism—similar to the structure of the 
physical system or phenomenon being represented.3 This account 
has some intuitive appeal; consider a problem where we are told that 
Angeline has 3 apples and Keisha has 5 apples and are then asked 
how many apples Angeline and Keisha have together. Clearly, the 
number “3” corresponds in some way to “how many apples Angeline 
has,” the number “5” corresponds in some way to “how many apples 
Keisha has,” and the operation of addition corresponds in some way 

1	 Eugene P. Wigner, “The Unreasonable Effectiveness of Mathematics in the 
Natural Sciences,” Communications on Pure and Applied Mathematics 13, no. 1 
(1960), 10.1002/cpa.3160130102. 

2	 Bertrand Russell, Introduction to Mathematical Philosophy (New York: 
Macmillan, 1920).

3	 See Christopher Pincock, “A Role for Mathematics in the Physical Sciences,” 
Noûs 41, no. 2 (2007), 10.1111/j.1468-0068.2007.00646.x. The mapping 
account has had many recent formulations, notably by Pincock.
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to the “and” in “how many apples Angeline and Keisha have together.” 
Thus, the problem can be solved using the mathematical equation 3 
+ 5 = 8. The structure of the mathematics corresponds, or “maps,” 
to the structure of the system under consideration, in this case on an 
element-by-element basis.

However, mathematical representations of the physical world 
quickly become more complicated. In the two-body problem, we 
consider two bodies moving in a vacuum and attempt to find and solve 
the dynamical equations expressing their motion, given the force of 
gravity acting between them. This is a relatively simple problem that 
most undergraduate physics students could solve with little trouble. 
We end up with a single differential equation that is only required to 
express motion in two dimensions, which produces one line of force. 
However, as soon as we add another body to this system—the “three-
body problem”—it becomes exponentially harder to find solutions. 
There are three lines of force, and they interact with one another 
in ways that are hard to isolate. We end up with a system of several 
differential equations, and an exact solution is difficult to find.

Application of the mapping account becomes less and less intuitive 
as the mathematics used to represent a physical system become not 
only more complicated, but also begin to employ idealizations. 
Idealizations occur when our representation utilizes an assumption 
that we know to be false, such as assuming an infinitely deep ocean 
when constructing a representation for water wave dispersion. If 
our mathematics involves false assumptions about the world, then 
idealizations trouble the idea that our mathematics can map directly 
onto the natural world. 

The mapping account of applied mathematics has faced many 
objections regarding both the role mathematics plays in explanation 
and how it can apply in situations where mathematical representations 
are inconsistent.4 In this paper, I argue that a further obstacle for the 
mapping account is the view it employs of physical concepts. This 
problem with the mapping account traces back to our intuitions 
about how mathematics is applied, and how scientific laws work in 

4	 See Robert Batterman, “On the Explanatory Role of Mathematics in 
Empirical Science,” The British Journal for the Philosophy of Science 61, no. 1 
(2010), 10.1093/bjps/axp018. Batterman critiques the mapping account’s 
explanatory promise. See Pincock’s reply in Christopher Pincock, “On 
Batterman’s ‘On the Explanatory Role of Mathematics in Empirical 
Science,’” The British Journal for the Philosophy of Science 62, no. 1 (2011), 
10.1093/bjps/axq025. Additionally, a recent critique of the mapping account 
has been given in Colin McCullough-Benner, “Representing the World 
with Inconsistent Mathematics,” The British Journal for the Philosophy of Science 
(2019), 10.1093/bjps/axz001.
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general. To flesh out this idea, I consider a particularly troublesome 
application of mathematics: Prandtl’s Boundary Layer solution to the 
Navier-Stokes equation for fluid flow bordering a solid. The problem 
with Prandtl’s Boundary Layer solution is that we end up with two 
distinct systems of equations to describe what we think of as a single 
fluid. This should trouble us if we tap into our intuitions about how 
mathematics is applied, especially as encoded in the mapping account.

A good preliminary question is why we should care about 
Prandtl’s Boundary solution. After all, it works and nothing seems to 
be “wrong” with it, per se. However, a problem does lie in the way 
this solution’s success grates against our conception of how scientific 
theories function. There does not seem to be any physical counterpart 
to the mathematical “boundary layer” posited by Prandtl’s solution, 
and it is unclear why we are licensed to use different approaches to 
represent different patches of the fluid. 

Navier-Stokes’ intractability itself is puzzling. Physicists claim 
that the Navier-Stokes equation gives the most accurate representation 
of fluid flow. However, we can only show that it works in special 
circumstances, or by using numerical approximation of the solution.5 
Consider an example simpler than Navier-Stokes equation: the 
kinematic equations of classical mechanics. These equations relate 
the position, velocity, and acceleration of an object moving with a 
constant acceleration. We can check that the equations “work” by 
constructing an experiment with certain initial conditions, solving 
the kinematic equations for certain values given the initial conditions, 
and checking how these calculated values match with what we actually 
measure. We cannot do this with the Navier-Stokes equations due 
to their intractability. How, then, do we “know” that Navier-Stokes 
provides an accurate description of fluid flow, if we cannot “prove” it 
in the same way we would for simpler equations?

II. PHYSICAL CONCEPTS AND 
MATHEMATICAL REPRESENTATION

There are several approaches to diagnose the perceived problem 
with Prandtl’s Boundary Layer solution. The simplest approach would 
be to throw up our hands and cry, “It’s an approximation!” However, 
this seems like an unsatisfactory approach of giving up; it avoids 
the question of why this seemingly counterintuitive application of 

5	 Numerical approximation is a technique for approaching differential 
equations which does not attempt to find an exact solution, but rather an 
approximate one by taking small steps in values. Today, it is usually done 
via computer simulation. 



77 THE ELUCIDATION OF QUANTITATIVE LAWS OF NATURE

mathematics works by appealing to a “close enough” sort of response. 
We now have to ask why the approximation works so well. We want 
to know to what end we are justified in using it and where it may 
break down. These equations are used in significant circumstances 
such as airplane wing design and climate modeling, so it is important 
to know where they may not accurately represent. We must develop a 
more nuanced approach.

On a mapping account analysis of the situation, the problem is 
quite acute. A single natural system is represented by two different 
systems of equations, so the mapping account asserts that each set of 
equations is structurally similar in a specific way to some part of the 
fluid flow. However, this implies that the fluid flow has two separate 
structures, although they are related along their boundary. This result 
seems quite counterintuitive—clearly we took a misstep somewhere 
along the way. But where? As explained by Pincock, the mapping 
account posits three things: (i) there is a structure generated by the 
mathematics, (ii) there is a structure associated with the physical 
system under consideration, and (iii) there exists a specific kind of 
correspondence between the two structures.6 We have little reason 
to doubt (i). We may want to question (ii), depending on if we are 
scientific realists.7 However, further reflection shows that structure in 
nature does not have to be the exact structure posited by our theory. 
The mapping account makes no commitment to scientific realism; it 
simply tries to explain why our theory is successful. So, our last option 
is to interrogate the core of the mapping account: the correspondence 
asserted between the two structures. 

The correspondence claim asserts that we can capture the 
significant aspects of the natural system with mathematics. This is 
exactly what Wigner questions. How can we capture aspects of the 
physical world with mathematics when we consider concepts that 
go beyond counting discrete objects? This is where measurement 
comes into play. We can measure several fairly simple concepts in a 

6	 I will note here that this is not quite true. Pincock specifically posits an 
isomorphism or homomorphism between the two structures; this is the 
“special” part of the correspondence between the structures that I do 
not have time to fully dive into here. Thus, there are actually two parts to 
(iii): (iii

1
) there exists a correspondence between the possible occupants 

of the two structures, and (iii
2
) this correspondence preserves a relation 

that “only occupants x, y, and z can exist in combination.” However, 
considerations of (iii

1
) and (iii

2
) in combination will eventually lead us to 

the line of questioning I pursue here.
7	 Generally, scientific realism is the view that our best scientific theories 

accurately describe “what is out there.” In other words, a scientific realist 
believes that the entities posited to exist by our scientific theories do, in 
fact, exist.
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straightforward way. We measure length by having a unit length (e.g. 
an inch or a mile) and counting how many unit lengths constitute a 
given length. This measurement exhausts what we need to know about 
length, given our conceptualization of length. Likewise, we measure 
time by having a unit time (e.g. an hour or a year) and counting how 
many unit times constitute a given period. It is quite similar to the 
length concept, as is demonstrated by the phrase “length of time” that is 
often used to describe the passage of time. It can certainly be argued at 
this point that matters of precision make these measurement processes 
significantly less certain (e.g. measuring microscopic or astronomical 
lengths). But barring precision, it seems relatively straightforward that 
these measurements exhaust their respective concepts. 

Hasok Chang’s discussion of the history of thermometry 
demonstrates many obstacles in formulating a measurement process 
for physical concepts more complex than length, such as temperature, 
force, and viscosity.8 Chang begins by discussing what he calls 
“thermoscopes,” which consisted of a wide variety of devices 
showing change in temperature without giving a numerical scale or 
standard. These thermoscopes relied on the fact that fluids expand 
as they get hotter, and they constrained the motion of the fluid’s 
expansion along a line. In other words, these devices created an 
association between temperature and length. But when the time came 
to standardize thermoscopes, there were many different suggestions 
as to what fixed points of the scale should be used to calibrate the 
thermoscopes. Even after an agreement was reached, there was still 
doubt as to whether the “standard” thermometer did, in fact, track 
the linear increase of temperature. After all, there was no guarantee 
that a linear expansion of the fluid corresponded with a linear increase 
in temperature. Further, the thermometers consisting of a fluid in a 
tube failed to function in extreme cold or extreme heat. We can ask 
whether this measurement process exhausts our temperature concept. 
If we accept that the temperature concept is about the motion of 
individual molecules, we might doubt that our measurement process 
actually exhausts the temperature concept. After all, the temperature 
measurement process occurs on a macroscopic scale, so how could 
it track this microscopic process? The answer is that it does not. It 
simply averages to some degree that we assume to be “good enough,” 
depending on the scale at which we are working. 

Similar questions arise when we try to analyze the viscosity 
concept at work in the Navier-Stokes equation. Viscosity—as it was 

8	 Hasok Chang, Inventing Temperature: Measurement and Scientific Progress 
(New York: Oxford University Press, 2007).
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understood in the derivation of Navier-Stokes and still is today—
involves forces between individual molecules of the fluid which 
inhibit fluid motion. Viscosity was often described as “internal fluid 
friction” or “fluid resistance.” In other words, our viscosity concept 
tries to capture the various processes responsible for a fluid’s resistance 
to movement. However, in the Navier-Stokes equation, viscosity is 
reduced to a single number, a characteristic constant determined by 
the fluid under consideration, analogous to density or melting point. 
As we did with the temperature concept, we may wonder whether this 
measurement process—ascribing a single viscosity constant to a given 
fluid—exhausts our concept of viscosity, or internal fluid friction. It 
seems there is more going on within the viscosity concept than can be 
captured by a single number. Let us go into more detail about Navier-
Stokes in order to tease out what is going on here.

III. THE NAVIER-STOKES EQUATION AND 
VISCOSITY							    

The Navier-Stokes equation is regarded as the fundamental 
equation of fluid mechanics. As it is understood today, it attempts 
to describe fluid motion by considering an infinitesimal volume of 
fluid. The forces exerted on the volume of fluid are equated with 
the product of the volume’s acceleration and the density of the fluid. 
Incompressibility is then assumed, yielding the following equations:

1.	 μΔv —    P — ρf(x,t) =  ρ(∂v/∂t + v •   v)
2.	    • v = 09

The Navier-Stokes equations are notoriously intractable in terms of 
finding exact solutions. The trouble mostly comes from the second-
order partial derivative that occurs in the viscosity term. Earlier 
hydrodynamics equations from Euler essentially ignore viscosity, but 
otherwise mirror Navier-Stokes. However, the Euler equations yield 

9	 Here, ρ is the density of the fluid, v is the velocity vector of the volume of 
fluid, μ is the viscosity of the fluid, P is the pressure velocity field acting 
on the fluid, f is the sum of external forces acting on the fluid at a specific 
position and time, and t is time. Equation (1) is analogous to Newton’s 
Second Law, F=ma. Starting on the right-hand side, the density (mass 
per unit volume) stands in for the mass of the infinitesimal volume of 
fluid under consideration, and it is multiplied by the acceleration of this 
volume of fluid. Then, on the left-hand side, we see the sum of the forces 
acting on the volume of fluid. The first term represents force due to the 
fluid’s viscosity, the second term represents the force of pressure, and 
the last term represents external forces per unit volume. Equation (2) 
expresses the incompressibility constraint, which essentially encodes the 
conservation of mass. Along with particular boundary conditions, this 
equation yields the most accurate analytic description of fluid flow. 

Δ 	Δ
	Δ
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counterintuitive results regarding fluid flow near solids, so they are 
quite useless for practical purposes.10

Various simplifications have been proposed for particular cases of 
fluid flow, notably Prandtl’s Boundary Layer solution for fluid flow 
bordering a solid. Prandtl’s solution posits a very thin “boundary layer” 
right where fluid flow meets the solid (say, an immersed object or 
the walls of a pipe). Prandtl derived “boundary layer equations” that 
describe fluid flow inside this boundary layer—tractable equations 
which still recognize the importance the viscosity of the fluid comes 
to have near the solid. The result of adding this second set of equations 
is that we effectively divide fluid flow into the boundary layer—where 
fluid flow is described by the boundary layer set of equations—and 
the rest of the fluid—where fluid flow is described by the Eulerian 
hydrodynamics equations. This is the part of Prandtl’s solution that 
makes a mapping account interpretation counterintuitive; we have 
divided the fluid flow into two regions and performed different 
mathematical manipulations to Navier-Stokes for each region. The key 
difference between the two equations and the difficult concept leading 
to Prantl’s solution is viscosity. So, we will further probe into the 
viscosity concept here. 

IV. CONCLUSION: THE FINE GRAIN OF 
CONCEPTS

In his work on concepts, Mark Wilson emphasizes the “fine grain” 
of concepts that is often lost in our use of them.11 While our use of a 
concept may be successful for some time, we eventually run into trouble 
with its application, as we do with viscosity. Suddenly, the fine grain 
matters quite a bit more. For viscosity, this can be seen in the addition 
of Prandtl’s Boundary Layer solution for fluid flow bordering an object, 
where the fine grain of the viscosity concept becomes significantly more 
important. The behavior that viscosity attempts to capture varies greatly 
depending on the distance of the portion of fluid we are considering 
from bordering solids. However, instead of trying to capture everything 
at work here, physicists do something Wilson calls “physics avoidance;” 
they compress the complex interaction going on to a singularity (the 
boundary layer edge), obtain approximate equations for the fluid’s 

10	 See Olivier Darrigol, “Between Hydrodynamics and Elasticity Theory: The 
First Five Births of the Navier-Stokes Equation,” Archive for History of Exact 
Sciences 56, no. 2 (2002);  and Olivier Darrigol, Worlds of Flow: A history of 
hydrodynamics from the Bernoullis to Prandtl (New York: Oxford University 
Press, 2005) for more on the history of hydrodynamics and Navier-Stokes.

11	 Mark Wilson, Wandering Significance: An Essay on Conceptual Behavior (New 
York: Oxford University Press, 2006). 



81 THE ELUCIDATION OF QUANTITATIVE LAWS OF NATURE

behavior on either side of this singularity, and match the equations at 
the singularity. In other words, they do their best to avoid addressing 
the fine grain of the viscosity concept, since mathematically representing 
that fine grain turns out to be incredibly complex. 

There are many instances of this “physics avoidance,” even 
in classical mechanics. Wilson’s main example is the collision of 
billiard balls. Any beginning physics student learns that conservation 
of momentum for perfectly elastic solids can model a billiard ball 
collision, and this is a relatively easy problem to solve mathematically. 
However, there is more going on in the actual billiard ball collision 
than is represented in the conservation of momentum. The balls 
deform in ways that are difficult to model, and shock waves propagate 
through each ball. This fine grain of collision becomes increasingly 
significant as we consider collisions involving higher speeds and 
different types of objects. For example, when we want to consider 
collisions of water balloons, the deformations upon collision become 
very important. So, we have another instance where a concept has a 
fine grain that we tend to ignore when possible. 

The problem with the mapping account and its guiding intuitions 
is that it does not recognize this fine grain of concepts when the 
equations we use also ignore it. This is why a mapping account analysis 
of the Navier-Stokes/Prandtl situation seems so problematic; the 
concepts encoded in the equations do not actually map to the more 
nuanced details of the physical world. Furthermore, this implies that 
our intuitions about mathematically describing natural phenomena 
deserve a closer look, as this fine grain often only shows up when our 
representations fail to be accurate. A careful approach to these issues 
should involve not only a philosophical analysis of the concepts both 
in theory and in use, but also a historical analysis of concepts and 
mathematical representations. Together, these analyses can illuminate 
aspects of concepts that are not recognized in contemporary scientific 
practice and philosophy of science.
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