TatC2 is Important for Growth of Acinetobacter baylyi Under Stress Conditions
DOI:
https://doi.org/10.33043/FF.5.1.37-50Keywords:
Acinetobacter baylyi, cell envelope, protein export, twin-argenin translocase, tatC2Abstract
Protein export pathways are important for bacterial physiology among pathogens and non-pathogens alike. This includes the Twin-Arginine Translocation (Tat) pathway, which transports fully folded proteins across the bacterial cytoplasmic membrane. Some Tat substrates are virulence factors, while others are important for cellular processes like peptidoglycan remodeling. Some bacteria encode more than one copy of each Tat component, including the Gram-negative soil isolate Acinetobacter baylyi. One of these Tat pathways is essential for growth, while the other is not. We constructed a loss-of-function mutation to disrupt the non-essential tatC2 gene and assessed its contribution to cell growth under different environmental conditions. While the tatC2 mutant grew well under standard laboratory conditions, it displayed a growth defect and an aberrant cellular morphology when subjected to high temperature stress including an aberrant cellular morphology. Furthermore, increased sensitivities to detergent suggested a compromised cell envelope. Lastly, using an in vitro co-culture system, we demonstrate that the non-essential Tat pathway provides a growth advantage. The findings of this study establish the importance of the non-essential Tat pathway for optimal growth of A. baylyi in stressful environmental conditions.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
By submitting to Fine Focus, the author(s) agree to the terms of the Author Agreement. Beginning in Fall 2018, all authors retain copyrights associated with their article contributions and agree to make such contributions available under a Creative Commons Attribution-NonCommercial 4.0 International license upon publication in Fine Focus. Copyrights to articles published prior to Fall 2018 have been transferred from the authors to Fine Focus.