Real-time Screening of Foods Using Repetitive Element PCR Reveals a DNA Marker Characteristic for Enterotoxigenic Bacillus Species
DOI:
https://doi.org/10.33043/FF.7.1.36-53Keywords:
Bacillus, enterotoxigenic, detection, rep-PCR, DNA fingerprintingAbstract
Bacillus cereus is traditionally thought to be the only member of its genus accepted as a pathogen in foods like grains, fruits, vegetables, and milk due to the presence of the nonhemolytic (Nhe) operon. However, many other Bacillus spp. may also harbor the Nhe operon and be pathogenic, including not just food-associated gastrointestinal toxicoinfections, but human endophthalmitis as well. Real-time PCR targeted the nheA gene in 37 samples obtained from food, soil, and reference cultures by analyzing the standard deviations of melt peaks. Repetitive element PCR was used to compare the banding patterns of each sample against B. cereus ATCC 14579 and three B. thuringiensis strains to “fingerprint” each isolate. Of the original 43 isolated tested, 37 were Gram-positive rods. The remaining six samples were Gram-positive cocci. Twenty-five of the 37 Gram-positive Bacillus spp. were nheA positive, while twelve were negative. Many of the nheA positive strains were species not previously known to contain Nhe and were capable of causing gastroenteritis in consumers.
Downloads
References
Ankolekar, C., Rahmati, T., and Labbe, R.G. 2009. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice. International Journal of Food Microbiology. 128: 460-66.
Antwerpen, M., Ximmermann, P., Bewley, K., Frangoulidis, D., and Meyer, H. 2008. Real-time PCR system targeting a chromosomal marker specific for Bacillus anthracis. Molecular and Cellular Probes. 22: 313-15.
Arnesen, L., P. Stenfors, A. Fagerlund, and P.E. Granum. 2008. From soil to gut: Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Rev. 32:579-606.
Bottone, E.J. 2010. Bacillus cereus as a volatile human pathogen. Clin. Microbiol. Rev. 23:382-398.
Brousseau, R., A. Saint-Onge., G. Prefontaine, L. Masson, and J. Cabana, 1993. Arbitrary polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Appl. Environ. Microbiol. 59:114-19.
Cardazzo, B., Negrisolo, E., Carraro, L. Alberghini, L., Patarnello, T., and Ciaccone, V. 2008. Multiple- locus sequence typing and analysis of toxin genes in Bacillus cereus food-borne isolates. Appl. Environ. Microbiol. 74:850-860.
Chen, M.L. and H.Y. Tsen. 2002. Discrimination of Bacillus cereus and Bacillus thuringiensis with 16s rRNA and gyrB gene-based PCR primers and sequencing of their annealing sites. J. Appl. Microbiol. 92: 912-19.
Cherif, A., Brusetti, L., Borin, S., Rizzi, A., Boudabous, A., Khyami-Horani, H., and Daffonchio, D. 2003. Genetic relationship in the ‘Bacillus cereus group’ by rep-PCR fingerprinting and sequencing of a Bacillus anthracis-specific rep-PCR fragment. J. Appl. Microbiol. 94:1108-19.
Cherif, A., Ettoumi, B., Raddadi, N., Daffonchio, D., and Boudabous, A. 2007. Genomic diversity and relationship of Bacillus thuringiensis and Bacillus cereus by multi-REP-PCR fingerprinting. Can. J. Microbiol. 53: 343-50.
Christiansson, A., Naidu, A.S., Nilsson, I., Wadstrom, T., and Pettersson, H.E. 1989. Toxin production by Bacillus cereus dairy isolates in milk at low temperatures. Applied and Environmental Microbiology. 55: 2595-2600.
Cooper, R.M. and J.L. McKillip. 2006. Enterotoxigenic Bacillus spp. DNA fingerprint revealed in naturally contaminated nonfat dry milk powder using rep-PCR. J. Basic Microbiol. 46:358-64.
Cummings, C.A., Bormann Chung, C.A., Fang, R., Barker, M., Brzoska, P.M., Williamson, P., Beaudry, J.A., Matthews, M., Schupp, J.M., Wagner, D.M., Furtado, M.R., Keim, P., and Budowle, B. 2009. Whole-genome typing of Bacillus anthracis isolates by next-generation sequencing accurately and rapidly identifies strain-specific diagnostic polymorphisms. Forensic Sci. Intl. 2:300-301.
Daffonchio, D., Raddadi, N., Merabishvili, M., Cherif, A., Carmagnola, L., Brusetti, L., Rizzi, A., Chanishvili, N., Visca, P., Sharp, R., and Borin, S. 2006. Strategy for identification of Bacillus cereus and Bacillus thuringiensis strains closely related to Bacillus anthracis. Applied and Environmental Microbiology. 72: 1295-1301.
Didelot, X., Barker, M., Falush, D., and Priest, F.G. 2009. Evolution of pathogenicity in the Bacillus cereus group. Systematic and Applied Microbiology. 32: 81-90.
Ehling-Schulz, M., Guinebretiere, M.H., Monthan, A., Berge, O., Fricker, M. and Svensson, B. 2006. Toxin gene profiling of enterotoxic and emetic Bacillus cereus. FEMS Microbiol Lett. 260: 232-40.
Giffel, M.C. and R.R. Beumer. 1999. Bacillus cereus: a review. The Journal of Food Technology in Africa. 4: 7-13.
Griffiths, M.W. 2010. Pathogens and toxins in foods: challenges and interventions. ASM Press, Washington, DC. pp. 1-19.
Hansen, B.M. and N.B. Hendriksen. 2001. Detection of enterotoxic Bacillus cereus and Bacillus thuringiensis strains by PCR analysis. Appl. Environ. Microbiol. 67:185-89.
Helgason, E., Okstad, O.A., Caugant, D.A., Johansen, H.A., Fouet, A., Mock, M., Hegna, I., and Kolsto, A.B. 2000. Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl. Environ. Microbiol. 66:2627-2630.
Henerson, I., Duggleby, C.J., and Turnbull, P.C.B. 1994. Differentiation of Bacillus anthracis from other Bacillus cereus group bacteria with the PCR. Int. J. Syst. Bacteriol. 44:99-105.
Hoffmaster, A.R., Novak, R.T., Marston, C.K., Gee, J.E., Helsel, L., Pruckler, J.M., and Wilkins, P.P. 2008. Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing. BMC Microbiol. 8:191. doi: https://doi.org/10.1186/1471-2180-8-191.
Hong, H.A., To, E., Fakhry, S., Baccigalupi, L., Ricca, E., and Cutting, S.M. 2009. Defining the natural habitat of Bacillus spore formers. Res. Microbiol. 160:375-379.
Jackson, P.J., Hill, K.K., Laker, M.T., Ticknor, M.T., and Keim, P. 1999. Genetic comparison of Bacillus anthracis and its close relatives using amplified fragment length polymorphism and polymerase chain reaction analysis. Journal of Applied Microbiology. 87: 263-9.
Jersek, B., Gilot, P., Gubina, M., Klun, N., Mehle, J., Tcherneva, E., Rijpens, N., and Herman, L. 1999. Typing of Listeria monocytongenes strains by repetitive element sequence-based PCR. Journal of Clinical Microbiology. 37: 103-9.
Jolley, K.A., Chan, M.S., and Maiden, M.C.J. 2004. mlstdbNet – distributed multi-locus sequence typing (MLST) databases. BMC Bioinformatics 5:86-93.
Kim, Y.R. and Batt, C.A. 2008. Riboprint and virulence gene patterns for Bacillus cereus and related species. J. Microbiol. Biotechnol. 18: 1146-55.
Kim, J.B., Kim, J.M., Kim, S.Y., Kim, J.H., Park, Y,B., Choi, N.J., and Oh, D.H. 2010. Comparison of enterotoxin production and phenotypic characteristics between emetic and enterotoxic Bacillus cereus. Journal of Food Protection. 73:1219-24.
Klee, S.R., Nattermann, H., Becker, S., Urban-Schriefer, M., Franz, T., Jacob, D., and Appel, B. 2006. Evaluation of different methods to discriminate Bacillus anthracis from other bacteria of the Bacillus cereus group. Journal of Applied Microbiology. 100: 673-81.
Lauri, A. and P.O. Mariana. 2009. Potentials and limitations of molecular diagnostic methods in food safety. Genes Nutr. 4: 1-12.
Maity, T.K. and A.K. Misra. 2009. Probiotics and human health: synoptic review. African Journal of Food Agriculture Nutrition and Development. 9.
Manzano, M, Cocolin, L., Carlo Cantoni, and Comi, G. 2003. Bacillus cereus, Bacillus thuringiensis and Bacillus mycoides differentiation using a PCR-RE technique. International Journal of Food Microbiology. 81: 249-54.
Marchuk, D., Drumm, B., Saulino, A., and Collins, F.S. 1990. Construction of T-vectors, a rapid and general system for direct cloning of unmodified PCR products. Nucleic Acids Research. 19: 1154.
McKillip, J.L. 2000. Prevalence and expression of enterotoxins in Bacillus cereus and other Bacillus spp., a literature review. Antonie Van Leeuwenhoek. 77: 393-9.
McKillip, J.L. and M.A. Drake. 2005. Genetic-based methods for detection of bacterial pathogens. Pp. 187-1-187-12. In (Y.H. Hui, Ed.) Handbook of Food Science and Technology, vol. 4. CRC Press, Boca Raton, FL.
Ngamwongsatit, P., Buasri, W., Pianariyanon, P., Pulsrikarn, C., Ohba, M., Assavanig, A., and Panbangred, W. 2008. Broad distribution of enterotoxin genes (HBLCDA, NHEABC, cytK, and entFM) among Bacillus thuringiensis and Bacillus cereus as shown by novel primers. International Journal of Food Microbiology. 121: 352-56.
Nicholson, W.L., Munakata, N., Horneck, G., Melosh, H.J., and Setlow, P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiology and Molecular Biology Reviews. 64: 548-72.
Owusu-Kwarteng, J., Wuni, A., Akabanda, F., Tano-Debrah, K., and Jespersen, L. 2017. Prevalence, virulence factor genes and antibiotic resistance of Bacillus cereus sensu lato isolated from dairy farms and traditional dairy products. BMC Microbiol. 17:65. DOI https://doi.org/10.1186/s12866-017-0975-9
Park, S.H., Kim, H.J., Kim, J.H., Kim, T.W., and Kim, H.Y. 2007. Detection and identification of Bacillus cereus group bacteria using multiplex PCR. Journal of Microbiology and Biotechnology. 17: 1177-82.
Peruca, A.P.S., G.T. Vilas-Boas, and O.M.N. Arantes. 2008. Genetic relationships between sympatric populations of Bacillus cereus and Bacillus thuringiensis, as revealed by rep-PCR genomic fingerprinting. Mem Inst Oswaldo Cruz. 103: 497-500.
Phelps, R.J. and McKillip, J.L. 2002. Enterotoxin production in natural isolates of Bacillaceae outside the Bacillus cereus group. Applied and Environmental Microbiology. 68: 3147-51.
Rahmati, T. and Labbe, R. 2008. Levels and toxigenicity of Bacillus cereus and Clostridium perfringens from retail seafood. Journal of Food Protection. 71: 1178-85.
Rasko, D.A., Altherr, M.R., Han, C.S., and Ravel, J. 2005. Genomics of the Bacillus cereus group of organisms. FEMS Microbiology Reviews. 29: 303-29.
Reyes-Ramirez, A. and Ibarra, J.E. 2005. Fingerprinting of Bacillus thuringiensis type strains and isolates by using Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis. Applied and Environmental Microbiology. 71: 1346-55.
Rowan, N.J., Caldow, G., Gemmell, C.G., and Hunter, I.S. 2003. Production of diarrheal enterotoxins and other potential virulence factors by veterinary isolates of Bacillus species associated with nongastrointestinal infections. Applied and Environmental Microbiology. 69: 2372-76.
Schoeni, J.L. and Amy C. Lee Wong. 2004. Bacillus cereus food poisoning and its toxins. Journal of Food Protection. 68: 636-48.
Travers, R., S., Martin, P.A.W., and Reichelderfer, C.F. 1987. Selective process for efficient isolation of soil Bacillus spp. Appl. Environ. Microbiol. 53:1263-66.
Vilas-Boas, G., Sanchis, V., Lereclus, D., Lemos, M.V.F., and Bourguet, D. 2002. Genetic differentiation between sympatric populations of Bacillus cereus and Bacillus thuringiensis. Applied and Environmental Microbiology. 68: 1414-24.
Vilas-Boas, G.T., A.P.S. Peruca, and O.M.N. Arantes. 2007. Biology and taxonomy of Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis. Can. J. Microbiol. 53:673-87.
Wilson, M.K., Vergis, J.M., Alem, F., Palmer, J.R., Keane-Myers, A.M., Brahmbhatt, T.N., Ventura, C.L., and O’Brien, A.D. 2011. Bacillus cereus G9241 makes anthrax toxin and capsule like highly virulent B. anthracis Ames but behaves like attenuated toxigenic nonencapsulated B. anthracis sterne in rabbits and mice. Infec. Immun. 79:301203019.
Zhong, Y.S., Yoshida, T.M., and Marrone, B.M. 2007. Differentiation of Bacillus anthracis, Bacillus cereus and Bacillus thuringiensis by using pulsed-field gel electrophoresis. Applied and Environmental Biology. 73: 3446-49.
Zwick, M.E., J. Sandeep, X. Didelot, P.E. Chen, K.A. Bishop-Lilly, A.C. Stewart, K. Willner, S. Lentz,
N. Nolan, M.K. Thomason, S. Sozhammannan, A.J. Mateczun, L. Du, and T.D. Read. 2012. Genomic characterization of the Bacillus cereus sensu lato species: backdrop to the evolution of Bacillus anthracis. Genome Res. doi: https://doi.org/10.1101/gr.134437.111.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 John L. McKillip, Breanna R. Brenneman, Kyla L. Adamson, Matthew R. Beer, Yenling Ho, Kiev S. Gracias, Chelsea M. Priest, Erika N. Biernbaum
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
By submitting to Fine Focus, the author(s) agree to the terms of the Author Agreement. Beginning in Fall 2018, all authors retain copyrights associated with their article contributions and agree to make such contributions available under a Creative Commons Attribution-NonCommercial 4.0 International license upon publication in Fine Focus. Copyrights to articles published prior to Fall 2018 have been transferred from the authors to Fine Focus.